
SPREADSHEETLLM: Encoding Spreadsheets for Large Language Models

Yuzhang Tian*†, Jianbo Zhao*†, Haoyu Dong‡, Junyu Xiong†, Shiyu Xia†,

Mengyu Zhou, Yun Lin†, José Cambronero, Yeye He, Shi Han, Dongmei Zhang

Microsoft Corporation

Abstract

Spreadsheets are characterized by their exten-

sive two-dimensional grids, flexible layouts,

and varied formatting options, which pose sig-

nificant challenges for large language models

(LLMs). In response, we introduce SPREAD-

SHEETLLM, pioneering an efficient encod-

ing method designed to unleash and optimize

LLMs’ powerful understanding and reason-

ing capability on spreadsheets. Initially, we

propose a vanilla serialization approach that

incorporates cell addresses, values, and for-

mats. However, this approach was limited

by LLMs’ token constraints, making it im-

practical for most applications. To tackle this

challenge, we develop SHEETCOMPRESSOR,

an innovative encoding framework that com-

presses spreadsheets effectively for LLMs. It

comprises three modules: structural-anchor-

based compression, inverse index translation,

and data-format-aware aggregation. It signif-

icantly improves performance in spreadsheet

table detection task, outperforming the vanilla

approach by 25.6% in GPT4’s in-context learn-

ing setting. Moreover, fine-tuned LLM with

SHEETCOMPRESSOR has an average compres-

sion ratio of 25×, but achieves a state-of-the-art

78.9% F1 score, surpassing the best existing

models by 12.3%. Finally, we propose Chain

of Spreadsheet for downstream tasks of spread-

sheet understanding and validate in a new and

demanding spreadsheet QA task. We methodi-

cally leverage the inherent layout and structure

of spreadsheets, demonstrating that SPREAD-

SHEETLLM is highly effective across a variety

of spreadsheet tasks.

1 Introduction

Spreadsheets are ubiquitous for data management

and extensively utilized within platforms like Mi-

crosoft Excel and Google Sheets. Understand-

* Equal contribution.
† Work during internship at Microsoft.
‡ Corresponding author.

Figure 1: The SPREADSHEETLLM pipeline.

ing spreadsheet layout and structure (Dong et al.,

2019b; Gol et al., 2019; Hulsebos et al., 2019; Dou

et al., 2018; Wang et al., 2021; Deng et al., 2022;

Chen and Cafarella, 2014), a longstanding chal-

lenge for traditional models, is crucial for effective

data analysis and intelligent user interaction. Re-

cently, the rapid development of Large Language

Models (LLMs) has opened new frontiers in table

processing (Li et al., 2023b) and reasoning (Cheng

et al., 2022). However, spreadsheets pose unique

challenges for LLMs due to their expansive grids

that usually exceed the token limitations of popular

LLMs, as well as their inherent two-dimensional

layouts and structures, which are poorly suited to

linear and sequential input. Furthermore, LLMs of-

ten struggle with spreadsheet-specific features such

as cell addresses and formats, complicating their

ability to effectively parse and utilize spreadsheet

data, as detailed in Appendix A.

In this paper, we introduce SPREADSHEETLLM,

a pioneering framework to unleash and maximize

the potential of LLMs for spreadsheet understand-

ing and reasoning. We initially propose a vanilla

encoding method to serialize spreadsheets into

sequences, augmenting the Markdown encoding

method by including essential cell addresses and

(optional) formats. Furthermore, large spreadsheets

that exceed the token limits of LLMs not only limit

1

a
rX

iv
:2

4
0
7
.0

9
0
2
5
v
1

[c

s.
A

I]

1
2
 J

u
l

2
0
2
4

their processing but also, as observed in prior stud-

ies, degrade accuracy performance as the size in-

creases (Liu et al., 2024). To address this chal-

lenge, we propose SHEETCOMPRESSOR, featur-

ing a novel encoding framework comprising three

portable modules:

1) Structural Anchors for Efficient Layout

Understanding: Observations indicate that large

spreadsheets often contain numerous homogeneous

rows or columns, which contribute minimally to un-

derstanding the layout and structure (see left panel

in Figure 2 (a)). To address this, we identify struc-

tural anchors—heterogeneous rows and columns at

possible table boundaries that offer substantial lay-

out insights, as depicted in Figure 2 (b). Then we

remove distant, homogeneous rows and columns,

producing a condensed "skeleton" version of the

spreadsheet, as illustrated in Figure 2 (c).

2) Inverted-Index Translation for Token Ef-

ficiency: The vanilla encoding method becomes

token-consuming when handling spreadsheets with

numerous empty cells and repetitive values, as

shown in Figure 2 (c). To improve efficiency, we

depart from traditional row-by-row and column-by-

column serialization and employ a lossless inverted-

index translation in JSON format. This method cre-

ates a dictionary that indexes non-empty cell texts

and merges addresses with identical text, optimiz-

ing token usage while preserving data integrity.

3) Data Format Aggregation for Numerical

Cells: Adjacent numerical cells often share similar

number formats. Recognizing that exact numeri-

cal values are less crucial for grasping spreadsheet

structure, we extract number format strings and

data types from these cells. Then adjacent cells

with the same formats or types are clustered to-

gether. This method is visualized in the right exam-

ple of Figure 2, where rectangular regions are rep-

resented by uniform format strings and data types,

streamlining the understanding of numerical data

distribution without excessive token expenditure.

We conducted a comprehensive evaluation of our

method on a variety of LLMs. Our experiments

show that SHEETCOMPRESSOR significantly re-

duces token usage for spreadsheet encoding by

96%. Moreover, SPREADSHEETLLM has shown

exceptional performance in spreadsheet table de-

tection, the foundational task of spreadsheet under-

standing, surpassing the previous SOTA method

by 12.3% (Dong et al., 2019b). We also applied

SPREADSHEETLLM to a representative spread-

sheet QA task. Inspired by the Chain of Thought

(CoT) methodology (Zheng et al., 2023; Jiang et al.,

2023b), we propose Chain of Spreadsheet (CoS)

to decompose spreadsheet reasoning into a table

detection-match-reasoning pipeline. It significantly

outperformed existing SOTA methods for table

QA (Herzig et al., 2020; Cheng et al., 2022). Our

primary contributions are summarized as follows:

• We propose SPREADSHEETLLM, the first

work that substantially leverage LLMs for un-

derstanding and analyzing spreadsheet data.

To address challenges in scale, diversity,

and complexity of spreadsheets, we propose

SHEETCOMPRESSOR, an innovative encod-

ing framework to compress spreadsheets for

LLMs with efficient encoding.

• We fine-tune a variety of cutting-edge LLMs

to achieve optimal performance on spread-

sheet table detection, and demonstrate the

high effectiveness of SPREADSHEETLLM

in accurately understanding complex spread-

sheet layouts and structures.

• In order to extend the horizontal capabilities

of SPREADSHEETLLM to a wide range of

downstream tasks, we propose CoS and verify

it on Spreadsheet QA, highlighting its poten-

tial for intelligent user interaction.

2 Related Work

Spreadsheet Representation Spreadsheet repre-

sentation involves converting the spreadsheets into

specific representations for different models. There

are various methods for spreadsheet (table) repre-

sentation. (Dong et al., 2019a,b) enhance Mask-

RCNN to leverage spatial and visual information

in spreadsheets, and (Deng et al., 2024) explores

the usage of LLMs to evaluate image tables, but it

doesn’t work well for spreadsheet images as input

to VLMs (Xia et al., 2024). To capture sequential

semantics in rows and columns, LSTMs are further

adopted (Nishida et al., 2017; Gol et al., 2019) in

row&column directions. Pre-trained LMs (Dong

et al., 2022) are then proposed to understand spread-

sheets (Wang et al., 2021). Recent studies (Zhang

et al., 2023; Li et al., 2023b; Sui et al., 2023)

have explored the efficacy of using Markdown and

HTML for table representation. However, they are

not well suited to spreadsheets due to their single

table input, as experiments show in Appendix B.

Spreadsheet Understanding While most table

LLMs are restricted to single table settings, spread-

sheets with multiple tables typically exceed token

2

Lyonesse

Encoding:

...

|A4, El Dorado|B4, QuantumMind|C4, 1,172,295|D4, 20-Aug|

|E4, |F4, QuantumMind|G4, |H4, |\n

|A5, Lemuria|B5, DreamSculpt|C5, |D5, 20-Aug|

|E5, |F5, Atlantis|G5, 1,797,915|H5, 9.13%|\n

|A6, Lyonesse |B6, DreamSculpt|C6, 1,573|D5, 20-Aug|

|E6, |F6, Lyonesse|G6, 579,299|H6, 2.94%|\n

…

Sub Region

QuantumMind

yy-mm D2:D18

IntNum

Atlantis A2 A7

Percentage

…

…

…

…

B2:B4

…

C2:C4

C6:C12 …

H5:H6

H8:H9 …

Encoding:
{

“Sub Region”: A1,F1,

“QuantumMind”: B2:B4,F4,
“yy-mm”: D2:D18,D21:D23,

“IntNum”: C2:C4,C6:C12,...
“Percentage”: H5:H6,H8:H9,...

...

}

A1 F1Sub Region

QuantumMind

20-Aug D2:D18

C21,064,955

19,700,822

Atlantis A2

…

9.13%

…

…

…

…

B2:B4

…

G16

H5

…

100.00% H16

A1 F1

A7

Encoding:
{

“Sub Region”: A1,

“Atlantis”: A2,A7,F5,A10,...
“QuantumMind”: B2:B4,F4,

“20-Aug”: D2:D18,D21:D23,
“1064955”: C2,

“19700822”: G16,

“9.13%”: H5,
“100.00%”: H16, ...

}

Remove

rows/cols
that are k

row/cols

away
from

anchors

(a) (b)

(c)

coordinate rearrangement

2. Inverted-index Translation 3. Data-format-aware Aggregation1. Structural-anchor-based Extraction

Propose

candidate
boundary

as

structural
anchors

Figure 2: Illustration of the SHEETCOMPRESSOR framework. The original spreadsheet contains two tables, featuring

numerous data entries or hierarchical headers, which can be viewed in the supplementary materials. The completed

spreadsheet consists of 576 rows and 23 columns, with an vanilla encoding of 61,240 tokens. Initially, we first

extract cells using structural anchors, rearranging them into a smaller 24×8 sheet. Subsequently, we perform

index-invert, removing empty cells. Finally, we aggregate cells based one data formats, achieving an extremely

compact representation of the spreadsheet, which contains only 708 tokens.

limits. Moreover, the diversity in multi-table layout

and structure significantly confounds the problem.

Spreadsheet table detection (Dong et al., 2019b;

Christodoulakis et al., 2020; Doush and Pontelli,

2010; Vitagliano et al., 2022) aims at identifying

all tables on a given sheet and determining their re-

spective ranges. As a fundamental task for spread-

sheet understanding, this task triggers hundreds

of millions of daily average usage in commercial

spreadsheet tools (Zhang et al., 2024), and the accu-

racy still urges improvements due to the flexibility

and complexity of spreadsheets.

Spreadsheet Downstream Tasks Spreadsheet

understanding is enabling for a series of spread-

sheet tasks, such as table question answering anal-

ysis (He et al., 2024; Cheng et al., 2021b, 2022;

Jiang et al., 2022; Herzig et al., 2020), table ex-

traction (Chen and Cafarella, 2013, 2014; Li et al.,

2024), formula or code generation (Chen et al.,

2021; Cheng et al., 2021a; Joshi et al., 2024; Chen

et al., 2024; Li et al., 2023a), error detection (Wang

and He, 2019; Dou et al., 2016), etc. In this pa-

per, we choose spreadsheet QA, one of the most

demanded spreadsheet analysis tasks. It is an ex-

tension of the Table QA task in spreadsheet data,

with the additional complexity of detecting and

matching multiple tables within a spreadsheet.

LLMs’ Token Efficiency Related work suggests

that the performance of LLMs degrades signifi-

cantly with long contexts (Liu et al., 2024; Xu

et al., 2023). Efforts to improve model performance

and reduce costs have led to the development of

compression techniques for long prompts. Some

researchers employ information-theory metrics to

filter out redundant information (Li, 2023; Jiang

et al., 2023a). Additionally, specialized models

have been proposed to optimize prompt compres-

sion (Pan et al., 2024). However, these strategies

primarily address natural language prompts and

may not suit tabular data, potentially leading to

considerable structure and data information loss.

DBCopilot (Wang et al., 2023) enables text-to-

SQL conversion on large databases through schema

routing. However, due to LLMs’ insufficient abil-

ity in understanding inherent multi-table layouts

and complex table structures that cannot execute

queries similar to SQL, schema routing is imprac-

tical, restricting the broader application of cutting-

edge tabular works (Cheng et al., 2022; Li et al.,

2023b; Sui et al., 2024) on spreadsheet data.

3 Method

We propose a novel spreadsheet encoding frame-

work in a Markdown-like style as text. To achieve

a more compact and efficient representation, we

introduce three independent yet combinable mod-

ules: structural-anchor-based extraction, inverted-

index translation, and data-format-aware aggrega-

3

tion, which enable efficient data compression and

enhance performance on downstream tasks.

3.1 Vanilla Spreadsheet Encoding with Cell

Value, Address, and Format

Due to the absence of standardized practices in

spreadsheet encoding for LLMs, we first explore

traditional spreadsheet encoding methods. Ap-

pendix B presents a comparison of different main-

stream tabular data encoding methods, including

HTML, XML, and Markdown. Based on the en-

coding length and performance on spreadsheet un-

derstanding tasks, we use a Markdown-like style

representation:

S = {Celli,j}i∈m,j∈n, (1)

T = markdown {encode (Celli,j)}

: = “|Addressi,j , Valuei,j , Format|... \n”,
(2)

where S ∈ R
m,n denotes the spreadsheet, T ∈ R

1

denotes the text representation of a cell, and i, j,

m, n respectively represent the row and column in-

dex of the cell and the row and column range of S .

We also explored the inclusion of cell format infor-

mation (such as background color, bold font, bor-

ders, etc.) into each cell’s representation. However,

these experiments demonstrated that such detailed

encoding adversely affects model performance due

to rapid token limit exceedance and LLMs’ inad-

equate capability to process format information

effectively, as detailed in Appendix A. We plan to

further explore this in future research, focusing on

enhancing the model’s ability to understand and

utilize format and structural cues.

3.2 Structural-anchor-based Extraction

Large spreadsheets often feature numerous homo-

geneous rows or columns, which minimally con-

tribute to the understanding of their layout and

structure, as depicted in Figure 2 (a). To effec-

tively compress spreadsheets while preserving vital

layout and structural information, we propose a

novel heuristic-based method, detailed further in

Appendix C. This method identifies heterogeneous

rows and columns at the edges of table bound-

aries—termed structural anchors:

A = {rp, cq}p∈m,q∈n , (3)

where rp = {Celli,j}i=p,j∈n
and cq = {Celli,j}i∈m,j=q

.

Using these anchor points, our method discards

rows and columns that are located more than k units

away from any anchor point, because they rarely

serve as table boundaries. The parameter k serves

as a threshold to control the scope of neighborhood

retention, effectively eliminating areas predomi-

nantly filled with homogeneous data that do not

contribute to an understanding of the spreadsheet’s

layout and structure. We explored the effects of

different k values in an ablation study, as detailed

in Appendix D.1.

The extracted rows and columns can be ex-

pressed as:

A+ =
{

rp+ , cq+
}

p+∈m,q+∈n
, (4)

where the extracted "skeletons" are defined

as: rp+ = {Celli,j}|i−p|≤k,j∈n and cq+ =

{Celli,j}i∈m,|j−q|≤k
. Then we obtain the extracted

compact spreadsheet:

Se = extract(S) = address_map(rp+∩ cq+).
(5)

Based on the compressed spreadsheet Se, we can

obtain extremely shorter text representation Te.
Furthermore, after extraction, we perform a co-

ordinate re-mapping to ensure continuity in cell

coordinates, preserving the integrity of data rela-

tionships within the compressed spreadsheet. This

re-mapping is critical for maintaining the accuracy

of prediction results, ensuring that analyses remain

consistent even after compression. This method fil-

ters out 75% spreadsheet content but preserves 97%

rows and columns at the edges of table boundaries.

3.3 Inverted-index Translation

Spreadsheets often contain numerous empty rows,

columns, and scattered cells. The standard en-

coding method, as detailed in Section 3.1, em-

ploys a grid-based method that pairs cell addresses

with their contents. This approach necessitates

recording empty cells to maintain the spreadsheet’s

two-dimensional structure, which significantly in-

creases token consumption. Furthermore, cells

with identical values are encoded repeatedly, fur-

ther exacerbating token usage.

To address these inefficiencies, we propose

a two-stage Inverted-index-based Translation

method. The first stage involves converting the

traditional matrix-style encoding into a dictionary

format, where cell values serve as keys indexing

the addresses. In the second stage, cells sharing the

same value are merged, with empty cells excluded

4

and cell addresses noted as ranges. This method

effectively reduces the number of required tokens

by eliminating redundancies and simplifying the

representation of repeated and empty cells. The

translation process is represented mathematically

as follows:

Tt = invert(T)

: = {Value : Address or Address_Region, ...}. (6)

Inverted-index Translation is a lossless compres-

sion method general for all spreadsheet understand-

ing tasks, and it remarkably increases SHEETCOM-

PRESSOR’s compression ratio from 4.41 to 14.91.

More details can be found in Table 1.

3.4 Data-format-aware Aggregation

In spreadsheets, adjacent cells typically share the

same data format. As shown in Figure 2 (3), col-

umn C records the sell-in billed revenue for differ-

ent products. Nonetheless, the concrete numerical

values are not essential for understanding the struc-

ture and semantics of the spreadsheet (although

there might loss of fine-trained details of exact

quantities, e.g., "18,476" and "18,674", this does

not impact our comprehension that this column

represents revenue). In contrast, the data type is

critical for understanding spreadsheets. On one

hand, data types represent fundamental semantic

properties, such as "time" or "phone number". It

motivates us to implement rules to match the value

of the cell to different data types. On the other hand,

in contrast to detailed numerical values, identical

data types may be compressed through clustering,

thereby reducing the number of tokens.

In this section, we introduce Data-format-aware

Aggregation for further compression and informa-

tion integration. Specifically, we employ Number

Format String (NFS), which is a built-in cell at-

tribute in spreadsheets. NFSs can be extracted by

default using tools like ClosedXML or OpenPyXL,

used to describe the format of cell data as a string.

For instance, the NFS for "2024.2.14" is "yyyy-

mm-dd", indicating a specific date format. How-

ever, spreadsheet users do not always explicitly add

NFSs to cells, so NFSs are sometimes absent. As a

complement, we propose a rule-based recognizer to

map a cell value to a specific predefined data type:

Year, Integer, Float, Percentage, Scientific notation,

Date, Time, Currency, Email, and Others. The first

nine types broadly cover approximately 55% of the

cells in our dataset derived from real-world corpora.

Finally, based on the NFSs and data type, the ag-

gregator aggregates the cells by Algorithm 1. This

process can be represented as follows:

NFSs = nfs({Celli,j}i∈m,j∈n), (7)

Ta = aggregator({Celli,j}i∈m,j∈n , NFSs,R),

(8)

where R denotes the predefined rules as detailed

above. In this way, we further reduce the number

of tokens. The compression ratio of the data re-

gions also increases from 14.91 to 24.79. More

detailed compression effects of different modules

are displayed in Table 1.

3.5 Chain of Spreadsheet

To extend the applicability of SPREADSHEETLLM

to a broader range of downstream tasks, we in-

troduce the Chain of Spreadsheet (CoS), which

unfolds two stages:

Table Identification and Boundary Detection

Initially, the compressed spreadsheet and the spe-

cific task query are input into the LLM. Leveraging

the advances in spreadsheet table detection, the

model identifies the table that is relevant to the

query and determines the precise boundaries of the

relevant content. This step ensures that only perti-

nent data is considered in the subsequent analysis,

optimizing the processing efficiency and focus.

Response Generation The query and the identi-

fied table section are re-input into the LLM. The

model then processes this information to generate

an accurate response to the query.

Through the CoS, SPREADSHEETLLM effec-

tively handles complex spreadsheets by breaking

down the process into manageable parts, thus en-

abling precise and context-aware responses. In this

paper, we validate the effect of the Spreadsheet QA

task, which is detailed in Section 4.2.

4 Experiments

In our experimental evaluation, we first verified the

effectiveness of our method in spreadsheet under-

standing. For this purpose, we chose the classic

and foundational task of spreadsheet table detec-

tion (Dong et al., 2019b). This task serves as a

critical benchmark for assessing the framework’s

ability to accurately identify and interpret table

structures within spreadsheets. Building upon this

foundational understanding, we further explored

5

the applicability of our method to downstream ap-

plications by selecting the representative task of

spreadsheet QA. This allows us to test the model’s

capability to not only detect but also comprehend

and respond to user queries based on the data and

structure identified in the spreadsheets.

4.1 Spreadsheet Table Detection

4.1.1 Dataset

We used the dataset introduced by (Dong et al.,

2019b), a benchmark dataset of real-world spread-

sheets with annotated table boundaries. Due to

the complexity and ambiguity of precise address

labeling (the Fleiss Kappa on the test set is 0.830),

we further implemented the quality improvement

pipeline on the test set by five human professions,

as detailed n in Appendix E. To this end, we ob-

tained a highly validated test set containing 188

spreadsheets. Based on the token usage of the

vanilla encoding method, we divided the test set

into four categories: Small, Medium, Large, and

Huge, with a partition of 64:32:70:22. More details

are shown in Appendix F. We adopted the Error-

of-Boundary 0 (EoB-0) metric for evaluation on

188 spreadsheets with 311 tables. EoB-0 requires

exact match of the top, left, bottom, and right

boundaries.

4.1.2 Experiment Setup

Baseline & Evaluation Metrics To evaluate the

performance of SPREADSHEETLLM, we chose

TableSense-CNN (Dong et al., 2019b) as the base-

line due to its previously demonstrated effective-

ness in spreadsheet table detection task. We em-

ployed the F1 Score as the primary metric to evalu-

ate and compare the performance of different mod-

els, as it balances precision and recall, providing a

holistic view of model accuracy.

Model Selection The experiments included both

closed-source and open-source models. From the

closed-source spectrum, we selected two versions

of OpenAI’s models: GPT4 and GPT3.5, which are

known for their advanced language understanding

capabilities. On the open-source side, we chose

Llama2, Llama3, Phi3, and Mistral-v2. The spe-

cific configurations are detailed in Appendix G.

4.2 Spreadsheet QA

4.2.1 Dataset

Existing datasets for the Table QA task focus solely

on single-table scenarios, leaving a notable gap in

performance evaluation for spreadsheets that con-

tain multiple tables. To bridge this gap, we devel-

oped a new Spreadsheet QA dataset tailored to the

complexities of multi-table environments. We sam-

pled is better 64 spreadsheets from our larger col-

lection and crafted 4-6 questions per spreadsheet,

targeting fundamental operations such as searching,

comparison, and basic arithmetic. We deliberately

excluded questions involving composite operations

to maintain clarity and focus in testing specific

skills. Each question was paired with an answer,

formatted either as a specific cell address or a for-

mula that includes cell addresses, facilitating direct

and unambiguous evaluations of the model’s abil-

ity to navigate and interpret spreadsheet data. This

approach resulted in a comprehensive test dataset

comprising 307 items, each a tuple of (Q,A, S),
which is detailed in Appendix H.

4.2.2 Experiment Setup

Baseline & Evaluation Metrics Given that

LLMs have not yet been systematically applied

to Spreadsheet QA tasks, we have selected TAPEX

and Binder (Herzig et al., 2020; Cheng et al., 2022),

which are established baselines in the Table QA do-

main, for comparative evaluation. Since TAPEX

and Binder are designed primarily for single-table

data, we adapted them for our multi-table context.

Initially, our fine-tuned model identifies table re-

gions relevant to each question. These regions are

then formatted and fed into the baseline models. In

cases where the input exceeds the token limitations

of the baseline models, truncation is employed. The

accuracy of the answers is assessed based on the

correctness of the cell addresses and cell combina-

tions/calculations provided in the answers.

Model Selection Our experiments were con-

ducted using the GPT4 model, leveraging its ad-

vanced capabilities in language understanding and

reasoning. Details on parameters and configura-

tions used are documented in Appendix G.

4.2.3 Experiment Procedure

In this section, we employed the model fine-tuned

on the spreadsheet table detection task to conduct

QA experiments. The procedure followed the CoS

described in section 3.5. Particularly, for instances

where the related table was still too large to process

effectively, we applied further compression tech-

niques. In cases where tables were exceptionally

large and defy effective compression, we utilized

a table-splitting algorithm designed to recognize

6

Table 1: Average Compression Ratio on test datasets. Results of the train & valid set are shown in Appendix J.1.

Metric No Modules Module 1 Module 2 Module 3 Module 1&2 Module 1&3 Module 2&3 Module 1&2&3

Total Tokens 1,548,577 350,946 580,912 213,890 103,880 96,365 211,445 62,469

Compress Ratio 1.00 4.41 2.67 7.24 14.91 16.07 7.32 24.79

headers and perform strategic concatenation, ensur-

ing that each segment of the split table retains as

much contextual integrity as possible. The specifics

of this algorithm are detailed in Appendix M.2.

5 Results

5.1 Compression Ratio

The effectiveness of our encoding process in reduc-

ing the size of spreadsheet data is quantitatively

assessed using the compression ratio, which is de-

fined by the formula:

r = n/n′, (9)

Our encoding methodology has significantly opti-

mized token usage within spreadsheets. In our test

set, it achieved an impressive 25× compression ra-

tio, substantially reducing the computational load

for processing large datasets. The specific compres-

sion ratios achieved by various module combina-

tions within SHEETCOMPRESSOR are detailed in

Table 1. These results highlight the efficacy of our

approach across different configurations, demon-

strating its robustness and adaptability in handling

diverse spreadsheet structures.

5.2 Spreadsheet Table Detection

5.2.1 Main Results

Table 2 illustrates the performance differences

among various models and methods on spreadsheet

table detection task, and the detailed case study can

refer to Appendix K.

1) Enhanced Performance with various

LLMs: The fine-tuned GPT4 model achieved the

F1 score of approximately 76% across all datasets,

while our encoding method without aggregation

achieved the F1 score of approximately 79% across

all datasets. This marked a 27% improvement over

the same model fine-tuned on original data, a 13%

increase over TableSense-CNN, and established a

new SOTA. The entire encoding method slightly

reduced the F1 score within a tolerable range, but

achieved good compression results, as shown in Ta-

ble 1. We also evaluated our encoding method on

a series of open-source models. Notably, Llama3

Table 2: Results of various Model & Method configu-

rations on spreadsheet table detection. Our encoding

method achieved SOTA on the GPT4 model.

Model & Method Small Medium Large Huge All

ICL

Mistral-v2 0.071 0.013 0.029 0.017 0.036

GPT4 0.318 0.292 0.090 0.000 0.154

GPT4-compress 0.480 0.454 0.373 0.330 0.410

Fine-tune

Llama3 0.715 0.765 0.290 0.000 0.471

Llama2 0.557 0.378 0.107 0.000 0.280

Phi3 0.604 0.481 0.201 0.130 0.330

Mistral-v2 0.700 0.784 0.472 0.123 0.542

GPT4 0.779 0.707 0.288 0.000 0.520

Llama3-compress 0.825 0.768 0.664 0.617 0.719

Llama2-compress 0.710 0.722 0.633 0.578 0.660

Phi3-compress 0.800 0.673 0.624 0.675 0.689

Mistral-v2-compress 0.778 0.729 0.686 0.744 0.726

GPT3.5-compress 0.795 0.649 0.600 0.680 0.680

GPT4-compress 0.810 0.832 0.718 0.690 0.759

-w/o Aggregation 0.864 0.816 0.739 0.753 0.789

TableSense-CNN 0.785 0.788 0.567 0.561 0.666

and Mistral-v2 achieved an F1 score of approxi-

mately 72%, just 6 percentage points below the

SOTA. The improvements due to our compression

method were substantial, with increases of 25%

for Llama3, 36% for Phi3, 38% for Llama2, and

18% for Mistral-v2. These results underscored the

significant enhancement performance attributable

to our encoding method.

2) Benefits for Larger Spreadsheets: Our com-

pression method significantly boosted performance

on larger spreadsheets, where the challenges were

most pronounced due to model token limits. The

improvements in F1 scores were particularly no-

table on huge spreadsheets (75% over GPT4, 19%

over TableSense-CNN), large spreadsheets (45%

and 17%), medium (13% and 5%), and small (8%)

spreadsheets. This demonstrated our method’s ef-

fectiveness in enabling LLMs to process a broader

range of spreadsheet sizes efficiently.

3) Improvements in In-Context Learning:

Compact encoding also significantly enhanced ICL

capabilities. For instance, the performance of

GPT4 on all data improved by nearly 26%, demon-

strating the method’s effectiveness beyond fine-

7

Table 3: Ablation studies on spreadsheet table detection.

Model Small Medium Large Huge All

GPT4 0.779 0.700 0.288 0.000 0.520

GPT4-compress 0.810 0.832 0.718 0.690 0.759

-w/o Extraction 0.805 0.772 0.618 0.321 0.655

-w/o Translation 0.785 0.804 0.729 0.636 0.743

-w/o Aggregation 0.864 0.816 0.739 0.753 0.789

Table 4: The results for Spreadsheet QA show that our

method achieved SOTA. "-FT" means fine-tuned model

on spreadsheet table detection task and is applied to QA.

Model Accuracy

TAPEX 0.378
Binder 0.622
GPT4 0.466
GPT4-compress-w/o splitting 0.651
GPT4-compress-w/o splitting-FT 0.694
GPT4-compress 0.684
GPT4-compress-FT 0.743

tuned models to include ICL scenarios as well.

More ICL results are shown in Appendix J.2.

4) Significant Cost Reduction: Our cost was

almost directly proportional to the input tokens,

because the output table regions are short, which

can be neglected. Based on the prices of the GPT4

and GPT3.5-turbo models 1 in ICL, we reduced

96% cost in our test set. Detailed calculations are

presented in Appendix I.

5.2.2 Ablation Experiment Results

Table 3 presents the results of ablation experiments

for different modules. The removal of the extrac-

tion module led to significantly lower F1 scores,

underscoring its critical role in capturing and retain-

ing key structural information. As highlighted in

Table 1, this module also achieved the most signifi-

cant token reduction, confirming its effectiveness.

After removing the aggregation module, the F1

score slightly increased. This observation might

be attributed to the NFS being more abstract than

straightforward numerical representations, which

can challenge an LLMs’ ability to interpret them

effectively. Despite this, the NFS method offered a

significantly high compression rate, enhancing its

potential for practical applications and cost control.

5.3 Spreadsheet QA

Table 4 shows the performance of various mod-

els on Spreadsheet QA tasks. We can draw the

1https://azure.microsoft.com/en-
us/pricing/details/cognitive-services/openai-service/

following conclusions:

1) Effectiveness of the CoS Method: The CoS

method we developed significantly boosted the ac-

curacy of models, showing a notable increase of

22% over the baseline GPT4 model. Given the

large size of typical spreadsheets, directly inputting

entire files often exceeded the token limits of con-

ventional models. The CoS effectively addressed

this issue by focusing only on regions relevant to

the questions posed, thereby reducing redundant

data and enabling more efficient handling of QA

tasks on larger spreadsheets.

2) Generalization Capability of the Fine-

tuned Model: The model that has been fine-tuned

on the spreadsheet table detection task demon-

strated robust generalization capabilities across

downstream QA tasks. This fine-tuning led to an

accuracy improvement of 6%. Moreover, it signifi-

cantly outperformed the TAPEX and Binder mod-

els by 37% and 12%, respectively. This substantial

margin highlighted that fine-tuning not only pre-

pared the model to better understand the specific

data and structural nuances of spreadsheets but also

enhanced its overall comprehension abilities.

Table 4 also shows the influence of our designed

split method on QA task performance. It can be

seen that using the split algorithm improved accu-

racy by 3% and 5% on ICL and fine-tuning respec-

tively. Therefore, LLMs can process some tables

unable to be processed originally due to the token

limitations, which enhances the performance of

SPREADSHEETLLM.

6 Conclusion

In this paper, we proposed the SPREAD-

SHEETLLM, a novel framework representing a

significant advancement in the processing and un-

derstanding of spreadsheet data by leveraging the

capabilities of LLMs. Through a novel encoding

method, SHEETCOMPRESSOR, this framework ef-

fectively addresses the challenges posed by the size,

diversity, and complexity inherent in spreadsheets.

It achieves a substantial reduction in token usage

and computational costs, enabling practical applica-

tions on large datasets. The fine-tuning of various

cutting-edge LLMs further enhances the perfor-

mance of spreadsheet understanding. Moreover,

Chain of Spreadsheet, the framework’s extension to

spreadsheet downstream tasks illustrates its broad

applicability and potential to transform spreadsheet

data management and analysis, paving the way for

more intelligent and efficient user interactions.

8

Limitations

While our SPREADSHEETLLM frameworks have

markedly advanced how LLMs interpret and utilize

spreadsheets, they also illuminate areas ripe for

further research and development. Currently, our

methods do not yet harness spreadsheet format de-

tails such as background color and borders, because

they take too many tokens. However, these ele-

ments often contain valuable contextual and visual

cues that could further refine our understanding

and processing of spreadsheet data. Additionally,

while SHEETCOMPRESSOR effectively aggregates

data regions, it does not currently employ a so-

phisticated semantic-based compression method

for cells containing natural language. For exam-

ple, categorizing terms like "China," "America,"

and "France" under a unified label such as "Coun-

try" could not only increase the compression ratio

but also deepen the semantic understanding of the

data by LLMs. Exploring these advanced seman-

tic compression techniques will be a key focus of

our ongoing efforts to enhance the capabilities of

SPREADSHEETLLM.

Ethics Statement

All data were collected, analyzed, and reported

without any bias or influence from external sources.

The privacy and confidentiality of the participants

were strictly maintained throughout the research

process. No personal identifiers were used in

the analysis or reporting of the data to ensure

anonymity. At the same time, data standard person-

nel were paid according to the highest local stan-

dard, and their daily working hours were strictly

limited to no more than 8 hours to protect their

legitimate rights and interests. We acknowledge

the contributions of all individuals and institutions

involved in this study and are committed to sharing

our findings and methodologies transparently to

facilitate further research and knowledge advance-

ment in the field.

References

Sibei Chen, Yeye He, Weiwei Cui, Ju Fan, Song Ge,
Haidong Zhang, Dongmei Zhang, and Surajit Chaud-
huri. 2024. Auto-formula: Recommend formulas
in spreadsheets using contrastive learning for table
representations. arXiv preprint arXiv:2404.12608.

Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles
Sutton, Hanjun Dai, Max Lin, and Denny Zhou. 2021.

Spreadsheetcoder: Formula prediction from semi-
structured context. In International Conference on
Machine Learning, pages 1661–1672. PMLR.

Zhe Chen and Michael Cafarella. 2013. Automatic web
spreadsheet data extraction. In Proceedings of the
3rd International Workshop on Semantic Search over
the Web, pages 1–8.

Zhe Chen and Michael Cafarella. 2014. Integrating
spreadsheet data via accurate and low-effort extrac-
tion. In Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 1126–1135.

Zhoujun Cheng, Haoyu Dong, Ran Jia, Pengfei Wu, Shi
Han, Fan Cheng, and Dongmei Zhang. 2021a. Fortap:
Using formulas for numerical-reasoning-aware table
pretraining. arXiv preprint arXiv:2109.07323.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2021b. Hitab: A hierarchical table
dataset for question answering and natural language
generation. arXiv preprint arXiv:2108.06712.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
et al. 2022. Binding language models in symbolic
languages. arXiv preprint arXiv:2210.02875.

Christina Christodoulakis, Eric B Munson, Moshe
Gabel, Angela Demke Brown, and Renée J Miller.
2020. Pytheas: pattern-based table discovery in
csv files. Proceedings of the VLDB Endowment,
13(12):2075–2089.

Naihao Deng, Zhenjie Sun, Ruiqi He, Aman Sikka, Yu-
long Chen, Lin Ma, Yue Zhang, and Rada Mihalcea.
2024. Tables as images? exploring the strengths and
limitations of llms on multimodal representations of
tabular data. arXiv preprint arXiv:2402.12424.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong
Yu. 2022. Turl: Table understanding through repre-
sentation learning. ACM SIGMOD Record, 51(1):33–
40.

Haoyu Dong, Zhoujun Cheng, Xinyi He, Mengyu Zhou,
Anda Zhou, Fan Zhou, Ao Liu, Shi Han, and Dong-
mei Zhang. 2022. Table Pretraining: A survey
on model architectures, pretraining objectives, and
downstream tasks. Proceedings of the Thirty-First
International Joint Conference on Artificial Intelli-
gence.

Haoyu Dong, Shijie Liu, Zhouyu Fu, Shi Han, and
Dongmei Zhang. 2019a. Semantic structure extrac-
tion for spreadsheet tables with a multi-task learning
architecture. In Workshop on Document Intelligence
at NeurIPS 2019.

Haoyu Dong, Shijie Liu, Shi Han, Zhouyu Fu, and
Dongmei Zhang. 2019b. TableSense: Spreadsheet
table detection with convolutional neural networks.

9

In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 69–76.

Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang,
and Jun Wei. 2018. Expandable group identifica-
tion in spreadsheets. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineering, pages 498–508.

Wensheng Dou, Chang Xu, Shing-Chi Cheung, and
Jun Wei. 2016. Cacheck: detecting and repairing
cell arrays in spreadsheets. IEEE Transactions on
Software Engineering, 43(3):226–251.

Iyad Abu Doush and Enrico Pontelli. 2010. Detect-
ing and recognizing tables in spreadsheets. In Pro-
ceedings of the 9th IAPR International Workshop on
Document Analysis Systems, pages 471–478.

Majid Ghasemi Gol, Jay Pujara, and Pedro Szekely.
2019. Tabular cell classification using pre-trained
cell embeddings. In 2019 IEEE International Confer-
ence on Data Mining (ICDM), pages 230–239. IEEE.

Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma, Rui
Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen, Shi Han,
et al. 2024. Text2analysis: A benchmark of table
question answering with advanced data analysis and
unclear queries. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
18206–18215.

Jonathan Herzig, Paweł Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin
Eisenschlos. 2020. TaPas: Weakly supervised
table parsing via pre-training. arXiv preprint
arXiv:2004.02349.

Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel
Zgraggen, Arvind Satyanarayan, Tim Kraska, Ça-
gatay Demiralp, and César Hidalgo. 2019. Sherlock:
A deep learning approach to semantic data type de-
tection. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, pages 1500–1508.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023a. Llmlingua: Compressing
prompts for accelerated inference of large language
models. arXiv preprint arXiv:2310.05736.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023b. Struct-
gpt: A general framework for large language model
to reason over structured data. arXiv preprint
arXiv:2305.09645.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham
Neubig, and Weizhu Chen. 2022. Omnitab: Pre-
training with natural and synthetic data for few-
shot table-based question answering. arXiv preprint
arXiv:2207.03637.

Harshit Joshi, Abishai Ebenezer, José Cambronero
Sanchez, Sumit Gulwani, Aditya Kanade, Vu Le,
Ivan Radiček, and Gust Verbruggen. 2024. Flame:

A small language model for spreadsheet formulas.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 12995–13003.

Hongxin Li, Jingran Su, et al. 2023a. SheetCopilot:
Bringing Software Productivity to the Next Level
through Large Language Models. In NeurIPS.

Peng Li, Yeye He, Cong Yan, Yue Wang, and Surajit
Chaudhuri. 2024. Auto-tables: Relationalize tables
without using examples. ACM SIGMOD Record,
53(1):76–85.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge,
Haidong Zhang, Danielle Rifinski Fainman, Dong-
mei Zhang, and Surajit Chaudhuri. 2023b. Table-gpt:
Table-tuned gpt for diverse table tasks. arXiv preprint
arXiv:2310.09263.

Yucheng Li. 2023. Unlocking context constraints of
llms: Enhancing context efficiency of llms with self-
information-based content filtering. arXiv preprint
arXiv:2304.12102.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Kyosuke Nishida, Kugatsu Sadamitsu, Ryuichiro Hi-
gashinaka, and Yoshihiro Matsuo. 2017. Understand-
ing the semantic structures of tables with a hybrid
deep neural network architecture. In Thirty-First
AAAI Conference on Artificial Intelligence.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin
Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Vic-
tor Rühle, Yuqing Yang, Chin-Yew Lin, et al. 2024.
Llmlingua-2: Data distillation for efficient and faith-
ful task-agnostic prompt compression. arXiv preprint
arXiv:2403.12968.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2023. Gpt4table: Can large lan-
guage models understand structured table data? a
benchmark and empirical study. arXiv preprint
ArXiv:2305.13062.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table meets llm: Can large
language models understand structured table data?
a benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, pages 645–654.

Gerardo Vitagliano, Lucas Reisener, Lan Jiang, Mazhar
Hameed, and Felix Naumann. 2022. Mondrian:
Spreadsheet layout detection. In Proceedings of the
2022 International Conference on Management of
Data, pages 2361–2364.

Pei Wang and Yeye He. 2019. Uni-detect: A unified
approach to automated error detection in tables. In
Proceedings of the 2019 International Conference on
Management of Data, pages 811–828.

10

Tianshu Wang, Hongyu Lin, Xianpei Han, Le Sun, Xi-
aoyang Chen, Hao Wang, and Zhenyu Zeng. 2023.
Dbcopilot: Scaling natural language querying to mas-
sive databases. arXiv preprint arXiv:2312.03463.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,
Shi Han, and Dongmei Zhang. 2021. TUTA: Tree-
based transformers for generally structured table pre-
training. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
pages 1780–1790.

Shiyu Xia, Junyu Xiong, Haoyu Dong, Jianbo Zhao,
Yuzhang Tian, Mengyu Zhou, Yeye He, Shi Han, and
Dongmei Zhang. 2024. Vision language models for
spreadsheet understanding: Challenges and opportu-
nities. arXiv preprint arXiv:2405.16234.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee,
Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina
Bakhturina, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Retrieval meets long context large lan-
guage models. arXiv preprint arXiv:2310.03025.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2023. Tablellama: Towards open large generalist
models for tables. arXiv preprint arXiv:2311.09206.

Xiaokang Zhang, Jing Zhang, Zeyao Ma, Yang Li,
Bohan Zhang, Guanlin Li, Zijun Yao, Kangli
Xu, Jinchang Zhou, Daniel Zhang-Li, et al. 2024.
Tablellm: Enabling tabular data manipulation by
llms in real office usage scenarios. arXiv preprint
arXiv:2403.19318.

Mingyu Zheng, Hao Yang, Wenbin Jiang, Zheng Lin,
Yajuan Lyu, Qiaoqiao She, and Weiping Wang. 2023.
Chain-of-thought reasoning in tabular language mod-
els. pages 11006–11019.

11

https://doi.org/10.18653/v1/2023.findings-emnlp.734
https://doi.org/10.18653/v1/2023.findings-emnlp.734

A GPT4 Struggles to Understand

Spreadsheets

The Figure 3 and Figure 4 show how GPT4 strug-

gles to understand spreadsheets. We also validated

the effect of cell format on the vanilla encoding

method on the spreadsheet table detection task. As

shown in Table 5, the results indicate that in ICL,

the inclusion of format marginally improves the

model’s performance on small datasets but results

in poorer performance on larger datasets. For the

fine-tuned model, the inclusion of format informa-

tion leads to a significant reduction in the overall

F1 score. This decline is attributed to the introduc-

tion of additional tokens, which causes some data

to exceed the model’s token limits. Additionally,

LLMs are not yet adept at understanding format

information.

Figure 3: Challenges of GPT4 understanding spread-

sheet data.

Table 5: The results of spreadsheet table detection ex-

periment with cell format.

Model Small Medium Large Huge All

GPT4-ICL 0.318 0.292 0.090 0.000 0.154

GPT4-ICL-FMT 0.429 0.000 0.000 0.000 0.204

GPT4-FT 0.779 0.707 0.288 0.000 0.520

GPT4-FT-FMT 0.758 0.000 0.000 0.000 0.315

Figure 4: GPT4 encoding methods and techniques for

processing spreadsheet data.

B Traditional Encoding Methods for

Spreadsheets

In our study, we explored traditional encoding

methods—Markdown, XML, and HTML—to rep-

resent spreadsheet data. Figure 5 illustrates the

comparative analysis of these methods. XML and

HTML encoding, while widely used, tend to result

in high token consumption due to the extensive use

of repeated label tags necessary for representing the

data structure. This approach markedly increases

the volume of data processed.

Conversely, the Markdown method, although

more token-efficient, has its limitations. One sig-

nificant drawback is the lack of explicit cell ad-

dress information, which frequently leads to errors

when indexing specific cell locations. Additionally,

Markdown’s rigid structure rules complicate the

accurate representation of merged cells, a common

feature in complex spreadsheets that is crucial for

preserving the integrity of data relationships.

To quantitatively assess these methods, we con-

ducted ICL experiments using the GPT-4 model on

spreadsheet detection tasks. The results, detailed

in Table 6, confirmed that while the Markdown

method outperformed XML and HTML in terms

of lower token usage, it still fell short in addressing

the needs of spreadsheet encoding effectively.

12

Figure 5: Examples of three traditional spreadsheet encoding methods: Markdown, XML, and HTML. Due to space

limitations, we only show the encoding of some cells.

Table 6: The ICL experiments of different encoding

methods of the spreadsheet on GPT4.

Small Medium Large Huge All

HTML 0.074 0.016 0.003 0.000 0.031

XML 0.292 0.102 0.066 0.000 0.142

Markdown 0.254 0.167 0.143 0.121 0.175

C Lightweight Heuristics for

Structural-anchor Proposal

Initially, this method enumerates bounding lines

by finding discrepancies in neighboring rows

and columns based on differences in cell values,

merged cells, borders, and fill color. In other words,

it enumerates rows and columns with imbalances

(text, merge, border, color, font, etc.). Rows and

columns without significant discrepancies are usu-

ally canonical data rows or columns that contribute

trivially to the layout understanding of a spread-

sheet. Subsequently, it composes all possible can-

didate boundaries using any two rows and any two

columns as top/bottom/left/right edges. In the third

step, heuristics are applied to filter unreasonable

boundary candidates by judging the integrity within

each candidate boundary. For example, the propor-

tion of numbers and characters in each row and

column is used to infer the sparsity in the internal

region and four edges of the candidate boundary.

The size of the boundary is used to infer if it is too

small to be a table, and the presence of header-like

rows and columns is also considered. After this

step, a small proportion of candidate boundaries

are preserved.

In the fourth step, overlapping candidate bound-

aries are enumerated pairwise. Information such as

the relative positions of candidate boundaries and

the presence of headers is used to determine which

candidate boundary more likely represents a table,

thereby filtering out some overlapping boundaries.

Figure 6 presents common overlapping patterns.

For example, for two overlapping candidate bound-

aries with close top boundaries, heuristics use the

proportion of textual cells or format strings like

year and date to determine candidate headers. The

existence of candidate headers is then used to de-

cide which candidate boundary to filter out.

Finally, we take the remaining candidate bound-

aries to derive structural anchors. However, due

to the challenge of fine-grained discriminating

headers, titles, and notes for heuristics, the can-

didate boundaries produced by the above heuristics

only achieve 46.3% F1 score in EoB-0 metric and

13

65.0% EoB-2 metric in our boundary detection

test set. Fortunately, including neighboring rows

and columns largely increases the coverage of real

bounding rows and columns, because headers, ti-

tles, and notes usually span few rows and columns.

So we propose to not only use the exact bounding

rows and columns as structural anchors but also in-

clude rows and columns within k rows and columns

neighboring the structural anchors to preserve ti-

tles, notes, and headers as much as possible. This

allows LLMs to further determine the exact bound-

aries by leveraging their advanced capabilities in

semantic understanding and reasoning. When k is

set to 4, over 97% of the border rows and columns

in ground truth tables are preserved. This ensures

that structure anchors rarely lose critical informa-

tion of the table skeleton. The source code and an

executable tool to use this method can be found in

the supplements to improve reproducibility.

Figure 6: Common overlapping patterns of candidate

boundaries.

D Ablation Experiment Results of

Spreadsheet Table Detection

D.1 Results on Structure-anchor Threshold

Table 7 details the ablation study concerning the

number of rows and columns retained near candi-

date boundaries. Optimal results were observed

when four rows/columns were preserved, yield-

ing the highest F1 score across all datasets. This

outcome is likely due to a balance between pre-

serving essential boundary information and main-

taining a feasible compression ratio. Retaining

fewer rows/columns might omit critical bound-

aries, reducing Recall, while preserving more

rows/columns diminishes the compression ratio,

potentially exceeding the model’s token limits.

For smaller data, results indicate a positive cor-

Table 7: Spreadsheet table detection Ablation on ex-

tracted threshold k. We present experiment results of

three different k: 2, 4, and 8 on fine-tuned GPT4.

k Small Medium Large Huge All

2 0.775 0.804 0.686 0.558 0.712

4 0.810 0.832 0.718 0.690 0.759

8 0.788 0.824 0.773 0.400 0.744

Table 8: Ablation experiment results on ICL on spread-

sheet table detection. Our compression method also

achieved the best F1 score on ICL.

Model Small Medium Large Huge All

GPT4-compress 0.480 0.454 0.373 0.330 0.410

-w/o Aggregation 0.386 0.271 0.215 0.267 0.280

-w/o Translation 0.386 0.427 0.338 0.418 0.379

-w/o Extraction 0.345 0.263 0.198 0.268 0.257

relation between the number of retained rows and

the F1 score, suggesting that higher information

retention leads to better model performance.

D.2 Results of Spreadsheet Table Detection on

ICL

We conducted experiments on the GPT4, "GPT4-

0125-preview" version. As shown in Table 8, the

results are consistent with the conclusions we draw

from our fine-tuned experiments.

E Spreadsheet Table Detection Test

Dataset Quality Improvement Pipeline

The quality improvement pipeline on the test set

consists of the following steps: (1) excluding those

spreadsheets where at least one cell contains lan-

guages beyond English; (2) removing spreadsheets

in the test set that lie in the same workbook as at

least one spreadsheet in the training set, because

spreadsheets in the same workbook, though dif-

ferent, are often similar; (3) annotating all spread-

sheets in three types: type 1 means certain for one

label; type 2 means multiple labels are reasonable;

type 3 means not certain. We employ five well-

educated annotators from top universities with ma-

jors in computer science to undertake this quality

improvement. For each spreadsheet in the test set,

we aggregate the annotations from all five anno-

tators and preserve multiple reasonable labeling

results for type 2 spreadsheets.

As a result, we obtained a well-annotated dataset

with 167 spreadsheets containing 268 tables for

type 1, 21 spreadsheets with 43 tables for type 2,

14

and 10 spreadsheets for type 3. All the raw files and

labels of the test set are attached to the supplements.

We selected data labeled as type 1 and type 2 as the

test set, comprising a total of 188 entries.

F Spreadsheet Table Detection Test

Dataset Partition

From the spreadsheet raw file, we can extract vari-

ous features, including cell address, value, format

(background color, bold, borders, etc.), and more.

We transformed these features into the markdown-

like style in Section3.1. Then, based on the number

of tokens after encoding and the length of the con-

text window of the test model, we divided them

into four categories: small (number of tokens less

than 4k), medium (4-8k), large (8-32k), and huge

(greater than 32k). The following is an example of

data in Markdown with format information.

Example: Encoding Spreadsheet in

Markdown-like Style with Cell Formats

Text Input:

B2,Table 4: Diesel-driven passenger cars,

2015|C2, |D2, |E2, |F2, |G2, |H2,

B3, |C3, |D3, |E3, |F3, |G3, |H3,

B4, |C4, |D4, |E4, |F4, |G4, |H4,

|B5, |C5,Diesel engine|D5, |E5, |F5,Share of

all passenger cars (%)|G5, |H5,

......

Format Input:

|B2,Font Bold|C2, |D2, |E2, |F2, |G2, |H2,

|B3, |C3, |D3, |E3, |F3, |G3, |H3,

|B4,Bottom Border,|C4,Bottom Bor-

der,|D4,Bottom Border,|E4,Bottom Bor-

der,|F4,Bottom Border,|G4,Bottom Bor-

der,|H4,Bottom Border,

|B5,Top Border,Right Border,Fill Color,Font

Bold|C5,Top Border,Bottom Border,Left

Border,Fill Color,Font Bold|D5,Top

Border,Bottom Border,Fill Color,Font

Bold|E5,Top Border,Bottom Border,Right

Border,Fill Color,Font Bold|F5,Top

Border,Bottom Border,Left Border,Fill

Color,Font Bold|G5,Top Border,Bottom

Border,Fill Color,Font Bold|H5,Top Bor-

der,Bottom Border,Fill Color,Font Bold

......

G Experiment Setup

Open-source model using Deepspeed for dis-

tributed training on a workstation with 8 A100

GPUs by LoRA.

Llama2:meta-Llama/Llama-2-7b-chat-hf;

Llama3:meta-Llama/Meta-Llama-3-8B-

Instruct;

Mistral-v2:mistralai/Mistral-v2-7B-Instruct-

v0.2;

Phi3:microsoft/Phi-3-mini-128k-instruct;

The parameters of open-source model fine-

tuning: cutoff len=5800; learning rate=5e-05;

num train epochs=15.0; train batch size=5; gra-

dient accumulation steps=8; lr scheduler type is

cosine; max grad norm=1.0; warmup steps=0; op-

tim is AdamW; precision is fp16; lora rank=32;

lora alpha=64; lora dropout=0.01; val size=0.0008;

eval steps=50; eval batch size=5

The parameters of GPT4/3.5 model fine-tuning:

We have attached the fine-tuned file and parameters

in the Supplementary materials.

The parameters of GPT4/3.5 model inference:

temperature=0, max tokens=300, top p=0.95, fre-

quency penalty=0, presence penalty= 0, stop=None,

and the rest are default settings.

H Spreadsheet QA Test Dataset

Overall Description The dataset of 64 spread-

sheets includes 9 single table spreadsheets, 35 dou-

ble table spreadsheets, 11 spreadsheets containing

three tables, and 9 spreadsheets containing four or

more tables. Among them, 15 spreadsheets contain

fewer than 4k tokens, 20 contain between 4k and

8k, 22 contain between 8k and 32k, and 7 contain

more than 32k.

Details of the Dataset Collection We selected

English-language spreadsheets and invited five

well-educated professional annotators to annotate

the data. During selection, spreadsheets containing

non-ASCII characters or lacking necessary seman-

tic comprehension information were excluded. We

ensured that the questions could be answered with

relative certainty using the information provided

in the tables, minimizing the potential confusion

or ambiguity. To further validate the quality of

the dataset, we invited two additional annotators to

perform cross-verification after the initial question-

answer labeling process, ensuring the correctness

and rationality of the answers. It shows an answer

accuracy of 0.846 in Fleiss Kappa, indicating al-

most perfect agreement.

Example: Spreadsheet QA Data Item

15

QUESTION: "What were the highest temper-

atures in Washington DC in 1998?"

GROUNDTRUTH: "X23 AND X24"

PROMPT: [Instruction + Encoded Spread-

sheet]

I Cost calculation

We use the ICL price of GPT4 due to the absence

of fine-tuned GPT4’s price. We neglect the out-

put sequence since it is much shorter than the in-

put sequence in tasks like spreadsheet boundary

detection and QA. The average cost of process-

ing a spreadsheet in our test set has decreased

to $0.000157 (62000/198 * 0.0005 / 1000) from

$0.00391 (1548000/198 * 0.0005 / 1000) for the

GPT3.5 turbo, and to $0.00939 (62000/198 * 0.03

/ 1000) from $0.235 (1548000/198 * 0.03 / 1000)

for the GPT4, saving an impressive 96.0% in costs.

The cost reduction similarly applies to all LLMs

we used.

J Other Experimental Results

J.1 Compression Results

Table 9 shows the compression ratio of each stage

in our method relative to the previous stage.

Table 10 shows the total compression ratio of

train and valid datasets.

J.2 The ICL results of open-source models on

spreadsheet table detection.

Table 11 shows the ICL experiments’ F1 score of

open-source models on the spreadsheet table de-

tection task. In this experimental setting, the open-

source model performs far worse than the closed-

source model.

J.3 Spreadsheet QA Ablation Experiment

Table 12 assesses the impact of removing individ-

ual modules on the QA performance. It details both

the overall accuracy and the accuracy of identifying

question-related regions during the CoT process.

The removal of any module generally leads to a

decrease in both metrics, with the most significant

Table 9: Compression Ratio of Data Region.

Metric No Modules Module 1 Module 1&2 Module 1&2&3

Total Tokens 1,548,577 350,946 103,880 62,469

Compression Ratio 1.00 4.41 3.38 1.66

Table 10: Compression performance on train & valid

Datasets.

Metric Before After

Valid Datasets (200 items)

Tokens 1,462,076 99,411

Compress Ratio 1.00 14.71

Train Datasets (7000 items)

Tokens 192,879,819 11,392,870

Compress Ratio 1.00 16.93

Table 11: The ICL results of open-source models’ per-

formance on spreadsheet table detection.

Model Small Medium Large Huge All

Llama3 0.042 0.028 0.020 0.018 0.027

Llama2 0.062 0.023 0.038 0.027 0.041

Phi3 0.037 0.040 0.041 0.000 0.034

Mistral-v2 0.071 0.013 0.029 0.017 0.036

drop observed when the extraction module is omit-

ted. This is likely due to the extraction module

achieving the lowest compression ratio (see Table

1), suggesting that a longer context may hinder the

model’s ability to accurately interpret the data.

K Case Study

K.1 Comparison of results before and after

structural-anchor-based extraction

Figure 7: The results before and after structural-anchor-

based extraction.

The case described in Figure. 7 illustrates the

results of GPT4-FT before and after structural-

anchor-based extraction. Specifically, before

structural-anchor-based extraction, most of the con-

tent in the spreadsheet is concentrated in the first

two rows and the three columns on the left and right,

leaving the middle largely empty. This led GPT4

to incorrectly predict the presence of two tables,

"B2:AK14" and "B19:F25." However, after apply-

16

Table 12: Each module of SHEETCOMPRESSOR con-

tributes to the positive outcomes on Spreadsheet QA.

"Answer" represents the accuracy of answering ques-

tions, and "Region" represents the accuracy of predict-

ing relevant regions in CoS.

Model Answer Region

GPT4-compress 0.743 0.974
-w/o Extraction 0.716 0.892
-w/o Translation 0.719 0.925
-w/o Aggregation 0.726 0.928

ing structural-anchor-based extraction, the spread-

sheet’s structure becomes more compact, making

it easier for GPT4 to correctly predict the table’s

range as "B2:M20" after coordinating rearrange-

ment.

From this case, we can observe that for spread-

sheets with sparse structures and many empty cells,

structural-anchor-based extraction not only signifi-

cantly reduces the number of tokens but also effec-

tively enhances GPT4’s ability in table detection.

K.2 Comparison of results before and after

inverted-index translation

Figure 8: The results before and after inverted-index

translation.

The case described in Figure. 8 demonstrates the

results of GPT4-FT before and after inverted-index

translation. Specifically, before the inverted-index

translation, the spreadsheet contained two tables

with identical column headers placed closely to-

gether, causing GPT4 to mistakenly predict them as

one large table, "B1:D14." However, after inverted-

index translation, GPT4 was able to aggregate cells

with shared values, thereby recognizing seman-

tic relationships between non-adjacent rows and

columns. This enabled it to correctly identify the

two separate tables in the spreadsheet, "B1:D10"

and "B11:D14".

This case indicates that inverted-index transla-

tion, by aggregating cells with shared values, not

only reduces token redundancy to some extent but

also leverages the model’s robust understanding of

semantic relationships.

K.3 Comparison of results before and after

data-format-aware cell aggregation

Figure 9: The results before and after data-aware cell

aggregation.

The case presented in Figure. 9 showcases the re-

sults of GPT4-FT before and after data-aware cell

aggregation. Specifically, before data-aware cell ag-

gregation, the spreadsheet contained two columns

with values of the same data type, occupying a

large number of tokens. The first column increased

incrementally by date, while the second column

increased incrementally by value. After data-aware

cell aggregation, the dates in the first column were

replaced with the format string "yyyy/mm/dd" and

their addresses were aggregated. Similarly, numeri-

cal values were handled with a "FloatNum" format.

This method allowed the model to predict the ta-

ble range correctly as "B1:C38," both before and

after processing, indicating that this approach sig-

nificantly reduces the token count while preserving

the semantic information of the spreadsheet data.

K.4 Comparison of SPREADSHEETLLM and

TableSense-CNN

As shown in Figure 10, the output of TableSense-

CNN is [A1:G44,K5:M14,K16:M38,Q20:W29],

while the output of SPREADSHEETLLM is

[A1:G44,K5:R14,K16:M38,Q20:W29]. SPREAD-

SHEETLLM succeeds in adding the region

"R5:R14" to the table2. Though it is spatially dis-

tant from the table on the left, SPREADSHEETLLM

can extract the connections from cells’ semantic

and structural relationship, which demonstrates its

powerful reasoning ability.

17

Figure 10: A challenging case. Traditional spreadsheet understanding methods usually miss the region "R5:R14",

but this column has a semantic relationship with the left cells, representing the percentage of those values in left

cells.

L Prompt Template

In this section, we present the prompt templates for

the Spreadsheet Table Detection and Spreadsheet

QA tasks.

L.1 Vanilla Prompt Template for Spreadsheet

Table Detection

A Vanilla Prompt Template for Spreadsheet Ta-

ble Detection:

INSTRUCTION:

Given an input that is a string denoting data

of cells in a spreadsheet. The input spread-

sheet includes many pairs, and each pair con-

sists of a cell address and the text in that cell

with a ’,’ in between, like ’A1,Year’. Cells

are separated by ’|’ like ’A1,Year|A2,Profit’.

The text can be empty so the cell data is like

’A1, |A2,Profit’. The cells are organized in

row-major order. Now you should tell me

the range of the table in a format like A2:D5,

and the range of the table should only CON-

TAIN HEADER REGION and the data region,

DON’T include the title or comments. Note

that there can be more than one table in the

string, so you should return all the RANGE,

LIKE [’range’: ’A1:F9’, ’range’: ’A12:F18’].

DON’T ADD OTHER WORDS OR EXPLA-

NATION.

INPUT:

[Encoded Spreadsheet]

L.2 Prompt Template for Spreadsheet Table

Detection

SPREADSHEETLLM Prompt Template for

Spreadsheet Table Detection:

INSTRUCTION:

Given an input that is a string denoting data

of cells in an Excel spreadsheet. The in-

put spreadsheet contains many tuples, de-

scribing the cells with content in the spread-

sheet. Each tuple consists of two elements

separated by a ’|’: the cell content and the

cell address/region, like (Year|A1), (|A1) or

(IntNum|A1:B3). The content in some cells

such as ’#,##0’/’d-mmm-yy’/’H:mm:ss’,etc.,

represents the CELL DATA FORMATS of

Excel. The content in some cells such as

’IntNum’/’DateData’/’EmailData’,etc., repre-

sents a category of data with the same for-

mat and similar semantics. For example, ’Int-

Num’ represents integer type data, and ’Scien-

tificNum’ represents scientific notation type

data. ’A1:B3’ represents a region in a spread-

sheet, from the first row to the third row and

from column A to column B. Some cells with

empty content in the spreadsheet are not en-

tered. Now you should tell me the range of

the table in a format like A2:D5, and the range

of the table should only CONTAIN HEADER

REGION and the data region. DON’T include

the title or comments. Note that there can be

more than one table in a string, so you should

return all the RANGE.

18

DON’T ADD OTHER WORDS OR EXPLA-

NATION.

INPUT:

[Encoded Spreadsheet]

L.3 Prompt Template for Spreadsheet QA

As detailed in Section 4.2, the CoS method includes

two stages, and the prompts for each stage are as

follows:

Spreadsheet QA Prompt Template:

Stage 1:

INSTRUCTION:

Given an input that is a string denoting data of

cells in a table. The input table contains many

tuples, describing the cells with content in the

spreadsheet. Each tuple consists of two ele-

ments separated by a ’|’: the cell content and

the cell address/region, like (Year|A1), (|A1)

or (IntNum|A1:B3). The content in some cells

such as ’#,##0’/’d-mmm-yy’/’H:mm:ss’,etc.,

represents the CELL DATA FORMATS of

Excel. The content in some cells such as

’IntNum’/’DateData’/’EmailData’,etc., repre-

sents a category of data with the same format

and similar semantics. For example, ’IntNum’

represents integer type data, and ’Scientific-

Num’ represents scientific notation type data.

’A1:B3’ represents a region in a spreadsheet,

from the first row to the third row and from

column A to column B. Some cells with empty

content in the spreadsheet are not entered.

How many tables are there in the spreadsheet?

Below is a question about one certain table in

this spreadsheet. I need you to determine in

which table the answer to the following ques-

tion can be found, and return the RANGE

of the ONE table you choose, LIKE [’range’:

’A1:F9’]. DON’T ADD OTHER WORDS

OR EXPLANATION.

INPUT:

[Encoded Spreadsheet with compression]

Stage 2:

INSTRUCTION:

Given an input that is a string denoting data of

cells in a table and a question about this table.

The answer to the question can be found in

the table. The input table includes many pairs,

and each pair consists of a cell address and

the text in that cell with a ’,’ in between,

like ’A1,Year’. Cells are separated by ’|’ like

’A1,Year|A2,Profit’. The text can be empty so

the cell data is like ’A1, |A2,Profit’. The cells

are organized in row-major order. The answer

to the input question is contained in the input

table and can be represented by cell address. I

need you to find the cell address of the answer

in the given table based on the given question

description, and return the cell ADDRESS of

the answer like ’[B3]’ or ’[SUM(A2:A10)]’.

DON’T ADD ANY OTHER WORDS."

INPUT:

[Encoded Spreadsheet without compression]

19

M Algorithm Steps

M.1 Identical Cell Aggregation

The corresponding algorithm steps is shown in Al-

gorithm 1.

Algorithm 1: Identical Cell Aggregation

Input :Matrix nfs composed of all cell

values in the spreadsheet.

1 Initialize m and n as the number of matrix

input rows and columns.

2 Initialize the m× n matrix visited with all

values set to False.

3 Initialize areas as an empty list.

4 Initialize the FormatDict dictionary, the

key-value pairs are data values and

predefined types respectively.

5 Function dfs(r, c, val_type):

6 if visited[r][c]) ∨ val_type! =
FormatDict[nfs[r, c]] then

7 return [r, c, r − 1, c− 1];

8 visited[r][c]← True;

9 bounds← [r, c, r, c];
10 foreach (tr, tc) around (r, c) do

11 if ¬visited[tr][tc])∧ val_type ==
FormatDict[nfs[tr, tc]] then

12 new_bounds←
dfs(tr, tc, val_type);

13 update bounds to include

new_bounds;

14 return bounds;

15 for r = 0 to m− 1 do

16 for c = 0 to n− 1 do

17 if ¬visited[r][c] then

18 val_type←
FormatDict[nfs[r, c]];

19 bounds← dfs(r, c, val_type);
20 areas← areas+

((bounds[0], bounds[1]),
21 (bounds[2], bounds[3]),
22 val_type);

Output :Aggregation matrix areas, each

cell which is filled with the

corresponding datatype after

applying custom rules.

M.2 Table Split QA Algorithm

The corresponding algorithm steps are shown in

Algorithm 2.

Algorithm 2: Question Answering Process

for Large Tables

Input :question composed of strings and

two-dimensional matrix region
1 Initialize header and answers to empty

lists

2 if calculateTokens(region) ≤ 4096 then

3 return answer_question(question,

region);

4 else

5 header ← predict_header(region);
6 body ← region[length(header) + 1 :

end];
7 for i = 0 to length(body) do

8 new_table← header + body[i :
i+ 3];

9 answer ←
answer_question(question, table);

10 answers.append(answer);

Output :final result answers

20

	Introduction
	Related Work
	Method
	Vanilla Spreadsheet Encoding with Cell Value, Address, and Format
	Structural-anchor-based Extraction
	Inverted-index Translation
	Data-format-aware Aggregation
	Chain of Spreadsheet

	Experiments
	Spreadsheet Table Detection
	Dataset
	Experiment Setup

	Spreadsheet QA
	Dataset
	Experiment Setup
	Experiment Procedure

	Results
	Compression Ratio
	Spreadsheet Table Detection
	Main Results
	Ablation Experiment Results

	Spreadsheet QA

	Conclusion
	GPT4 Struggles to Understand Spreadsheets
	Traditional Encoding Methods for Spreadsheets
	Lightweight Heuristics for Structural-anchor Proposal
	Ablation Experiment Results of Spreadsheet Table Detection
	Results on Structure-anchor Threshold
	Results of Spreadsheet Table Detection on ICL

	Spreadsheet Table Detection Test Dataset Quality Improvement Pipeline
	Spreadsheet Table Detection Test Dataset Partition
	Experiment Setup
	Spreadsheet QA Test Dataset
	Cost calculation
	Other Experimental Results
	Compression Results
	The ICL results of open-source models on spreadsheet table detection.
	Spreadsheet QA Ablation Experiment

	Case Study
	Comparison of results before and after structural-anchor-based extraction
	Comparison of results before and after inverted-index translation
	Comparison of results before and after data-format-aware cell aggregation
	Comparison of SpreadsheetLLM and TableSense-CNN

	Prompt Template
	Vanilla Prompt Template for Spreadsheet Table Detection
	Prompt Template for Spreadsheet Table Detection
	Prompt Template for Spreadsheet QA

	Algorithm Steps
	Identical Cell Aggregation
	Table Split QA Algorithm

